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Abstract

Spatial up-sampling is a critical component in many deep learning models for
image processing, yet traditional methods such as interpolation only consider local
information. This project explores improvements to Deep Fourier Upsampling, a
frequency-domain approach that supports up-sampling using the global frequency
domain information. We propose several enhanced variants, and evaluate their
performance on two tasks: image de-raining with LPNet and image segmentation
with DeepLabV3. Experimental results show that our Fourier attention-based
variant significantly improves de-raining quality, while both periodic and
attention-based Fourier Up-sampling enhance segmentation accuracy. These
findings demonstrate the versatility of Fourier-based Up-sampling across diverse
vision tasks.
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1 Introduction

1.1 Overviews

Nowadays, spatial up-sampling is extensively adopted in multi-scale modeling approaches. Tra-
ditional spatial up-sampling operators such as interpolation and transposed convolutions heavily
rely on local pixel correlations, which often lead to blurred edges or lost high-frequency details. In
contrast, Fourier domain inherently supports global modeling, which provides a brand new area for
up-sampling. However, up-sampling in the frequency domain faces challenges due to the absence of
invariant properties and local texture similarity; using naive interpolation in the spatial domain will
cause errors.



1.2 Related work

Spatial Up-sampling Spatial down- and up-sampling operations form the backbone of many
modern convolutional neural network architectures in computer vision tasks. Models like U-Net [[1]]
construct multi-scale representations by down-sampling in the encoder and then restoring spatial
resolution through up-sampling in the decoder. Similarly, architectures utilizing feature pyramids
[2]1301[41[5] and image pyramids [6][7][8] rely heavily on spatial up-sampling to achieve multi-scale
feature fusion. However, previous up-sampling methods only take effect on the spatial domain
and focus primarily on local pixel relationships, largely overlooking the potential of performing
up-sampling in the frequency domain, where global context modeling is naturally supported.

Spatial-Fourier Interaction Previous work has integrated Fourier transforms into deep neural
networks to harness frequency-domain information. Some approaches apply the discrete Fourier
transform (DFT) to convert spatial features into the frequency domain, allowing models to leverage
spectral characteristics to enhance performance [9][[L0]. Others utilize the convolution theorem to
accelerate computation via fast Fourier transform (FFT). For instance, FFC [11] replaces conventional
convolution with a hybrid spatial-Fourier interaction. Similarly, spectral pooling proposed in [[12]
reduces feature resolution by truncating high-frequency components in the Fourier domain. However,
these methods typically perform spatial-Fourier interaction at a single resolution and do not address
the more complex challenge of multi-resolution frequency-domain modeling.

1.3 Solutions and Advantages

Solutions The paper "Deep fourier Up-sampling” developed FourierUp, which is a learnable
operator that can be directly integrated into existing neural networks. It works by first transforming a
low-resolution feature map from the spatial domain into the Fourier domain using a 2D discrete Fourier
transform. Once in the Fourier domain, specialized upsampling techniques—such as 1)periodic
padding, 2)area interpolation, or 3)corner interpolation—are applied to increase the resolution of the
frequency representation according to theoretical transform rules verified in the paper [[13]. Finally,
an inverse Fourier transform is performed to convert the enhanced frequency map back into the spatial
domain, yielding a high-resolution feature map that retains both the global context and the fine details
of the original image.

Advantages FourierUp offers a powerful alternative to conventional spatial up-sampling by lever-
aging the global modeling capabilities inherent to the frequency domain. Unlike traditional methods
that rely on local pixel relationships Fourier up-sampling operates on a global scale, it captures
long-range dependencies and multi-scale frequency patterns through the spectral convolution theorem.
This enables a more robust integration of features across different resolutions, which is particularly
beneficial for complex computer vision tasks that demand both precise local detail and coherent
global context. Furthermore, while previous approaches have limited the interaction between spatial
and Fourier representations to a single resolution scale, Deep Fourier Up-Sampling extends this
capability across multiple scales. This multi-scale fusion enhances the recovery of fine textures and
object boundaries and thus improves overall performance. Also, FourierUp can be easily integrated
into existing networks and improves performance across diverse applications.

2  Quantitative Performance Prediction

Our experiments consist of two stages. In stage 1, we will modify the FourierUp components and
apply them to LPNet[14], a model for image de-raining, to verify the improvements. In stage 2, we
will apply the modified FourierUp sampling modules to image segmentation using DeepLabv3[/15]
as the base model, which is not mentioned in the original paper [13], to verify the versality of the
modules.

Stage 1 Aligned with the original paper [13]], we use the Rain200H dataset [16]] as the testing sets.
To evaluate the performance of the models, we employ Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM), which are widely used in image restoration tasks.



PSNR is defined as:
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e M AX7 is the maximum possible pixel value of the image.
* The Mean Squared Error (MSE) is defined as the average squared difference between the
original image I and its approximation K:
SSIM is defined as:
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* [y, [ty are the pixel sample mean of = and y;

* 02, o, are the sample variances of x and y;

* 04y is the sample covariance between x and y;

* ¢1 = (k1L)? and c3 = (ko L)? two variables to stabilize the division with weak denominator,

where L is the dynamic range of pixel values.

We expect our variants to outperform the original FourierUp whose performance is shown in Fig.[T]
The four model settings are defined as follows [13]]:
(1) Original: the baseline without any changes;

(2) FourierUp-AreaUp: replacing the original model’s spatial up-sampling with the union of the
Area-Interpolation variant of our FourierUp and the spatial up-sampling itself;

(3) FourierUp-Padding: replacing the original model’s spatial up-sampling operator with the union of
the Periodic-Padding variant of our FourierUp and the spatial up-sampling itself;

(4) Spatial-Up: replacing the variants of FourierUp in configurations 2 and 3 with spatial up-sampling.

. Rain200H Rain200L
Model Configurations PSNR SSIM PSNR  SSIM
Original 22907 0.775 32461 0.947
LPNet Spatial-Up 22956 0.777 32522 0.950
FourierUp-AreaUp | 22.163 0.783 32.681 0.954
FourierUp-Padding | 23.295 0.786 32.835 0.956

Figure 1: Performance comparison of LPNet with different up-sampling methods.

Stage 2 To evaluate our modified FourierUp on DeepLabv3, we choose the VOC2012 [17] as the
dataset. We use accuracy, mean accuracy, and mean intersection over union (mloU) as the evaluation
metrics.
The Accuracy is defined as:

c
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The Mean Accuracy is defined as:
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e TP, is the number of true positives for class c;
* F'N, is the number of false negatives for class c;

¢ (C is the total number of semantic classes.

The mloU is defined as:
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where:

* TP, is the number of true positives for class c;
* F'P, is the number of false positives;
e F'N, is the number of false negatives;

e ('is the total number of semantic classes.

Based on our integration of deep Fourier up-sampling via a fusion module, we anticipate at least a 3%
improvement over the baseline DeepLabV3+, which achieves around 90% on the VOC2012 testing
dataset at 10,000 epochs.

3 Methods and Theory

3.1 Mathematical formula of the Fourier-Up variants

Below shows the mathematical theory behind the three variants of the Deep Fourier Up-sampling|[13]],
including 1) periodic padding, 2) area interpolation and 3) corner interpolation.

Definitions f(z,y) € R2M*2N jg the 2-times zero-inserted up-sampled version of g(z,y) €
RM>N in the spatial domain. LetF (u, ) € R2M>2N " G(u,v) € RM>*N denote their corresponding
Fourier transforms. Let H (u, v) RM *2N be the 2-times area-interpolation up-sampled Fourier
transform of G(u, v), and h(m y) € RM*N denote its inverse Fourier transform.

Periodic padding F'(u,v) = F(u+ M,v) = F(u,v+ N) = F(u+ M,v+ N) and G(u,v) =
M ,where u = 0,1,2,...,N —landv = 0,1,2,...,M — 1. Then F(u,v) is the periodic
paddmg of G(u, v), where G(u, v) is exactly one quarter of F'(u,v) with the value being 1 times
decayed.

Area interpolation Let H(2u,2v) = H(2u+ 1,2v) = H2u,2v+ 1) = HQ2u+ 1,2v+ 1) =
G(u,v) withu =0,1,...,M —landv=0,1,..., N — 1. Then

h,y) = @g(%y)
h(z + M,y) = wg(%y) ©
ey + ) = AEEVZD oy
ho+ M,y + Ny = ABM 22N =y) 0y



where A(z,y) =1+ ¢ + % +e™(f%) andz = 0,1,...,M ~ 1,y =0,1,...,N — 1.
Corner interpolation
Theorem-1. Suppose the shifted F5"/* of the Fourier map G' € RM*N as

; M N
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where v’ = 0,1,...,M —1and v’ =0,1,...,N — 1, it holds that the inverse Fourier transform
f;hift of Féhlft

shift _ T+
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where x =0,1,..., M —landy =0,1,...,N — 1.

Theorem-2. Suppose the corner interpolated FE°" of the Fourier map G € RM*¥ it holds that the
inverse Fourier transform f7°" of F&™"

cor B ! y/ ' ! y/ (_1)(:v+y)
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where '’ = 2z andy’ =2y, z=0,1,...., M —landy=0,1,...,N — 1.

)

Note that rather than directly using the transformation rules derived above, the original paper
apply some learnable mechanics like using a 1x1 convolution filter to make the transformation
more flexible.

3.2 Innovated Fourier-Up Variants

Based on the original three variants of Fourier-Up variants, we innovate new variants to further
improve their efficiency. Basically, our modifications can be seperated into three categories according
to the module architecture as shown in

1) Original Fourier Up: The baseline without any changes.

2) Fourier_Up_Tuned: Fine-tuned original Fourier Up module.
pad_theory: To verify the effectiveness of learnable convolution over fixed mapping, this
variant replaces the learnable convolution kernel by the fixed value 1/4 stated in formula[3.1]

pad_larger_kenel: The Fourier transform operates globally, meaning that each
point in the Fourier spectrum is influenced by information from the entire input image. By
incorporating larger convolution kernels, the system may become more robust to noise.
Hence for this variant, we replace the 1*1 convolution to 3*3 with padding 1.

3) Fourier_Up_Stacked: Each of the three original variants has their own strength and
weakness as stated in [13]]. For example, the periodic-padding variant, while effective in
maintaining structural consistency, is prone to introducing boundary artifacts. On the other
hand, the area-interpolation variant, though better at preserving high-frequency details,
may result in the distortion of fine image structures. In order to leverage the stregth of
different variants, we stack two different Fourier Up variants and combine those result
with the original upsampling using a 1*1 convolution layer. We build pad_corner and
pad_area, which combines periodic padding with corner interpolation and area interpolation
respectively.

4) Fourier_Up_Atten: Through experiments, we noticed that not all frequencies contribute
equally to image reconstruction — some frequency bands are more important for preserving
texture, while some nearly contribute nothing. Self-attention can learn long-range
dependencies across the frequency map, allowing the module to focus on critical frequencies
and suppress less useful ones, which greatly leverages the global nature of the Fourier
domain.

Technically, we first apply a 1*1 convolution to project each RGB channel into



three separate feature maps (query, key and value) and flatten them, hence each query, key
and value has a dimension of [b (batch), ¢ (channel), h*w (height*width)]. Then we apply
batch matrix multiplication to the permuted query (/b, h*w, c]) and the key ([b, ¢, h*w]),
then apply the softmax to get the attention score (/b, h*w, h*w]). Finally, we perform batch
matrix multiplication between the attention score and permuted value (/b, h*w, c]) and
reshape the output to /b, ¢, h, w].
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Figure 2: The architecture of the three configurations

3.3 LPNet architecture

The architure of LPNet for image deraining is shown in[3] It first decomposes the rainy input into a
multi-scale Laplacian pyramid and feeds each level through a "convolution+residual” sub-network
to predict the clean high-frequency detail at that scale; these cleaned Laplacian levels are then
up-sampled and summed into a Gaussian pyramid, whose base image is the final derained output. In
total, there are four Up-sample modules where we apply our Fourier-Up Variants.
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Figure 3: LPNet Architecture



3.4 DeepLab architecture

The architecture of DeepLabv3 for image segmentation is shown below[d The two marked "Upsample
by 4" block is where we apply our Fourier-Up Variants.

Since all the variants are designed for x2 up-sampling, to match the feature map size, we use
the same component twice. However, the original bilinear interpolation in DeepLabv3 generates
513 x 513 feature maps while our variants gives 512 x 512. Hence we just apply the nearest neighbor
interpolation to fill the last pixel. Due to the extremely high dimension (256 channels), we apply
average or max pooling to the keys and values to shrink the size of each feature map to half.
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Figure 4: DeepLabV3 Architecture

4 Experimental results

4.1 Stage 1: Modify Fourier-Up variants (LPNet for image de-raining)
4.1.1 Dataset

Training: RainTrainH [[13] (1542 rained and ground truth image pairs)
Testing: Rain200H [[13]] (200 rained and ground truth image pairs)

4.1.2 Training PSNR diagram

As shown in[5] we have three main observations:

1. pad_attention (red) outperforms the others most of the time, which indicates the attention
machanism can help to generate meaningful frequency representation much more efficiently than
convolution operation.

2. pad_area (blue) and pad_corner (green) are slightly above the pad (yellow), suggesting that
stacking two variants can help to improve the results.

3. pad_theory (purple) has the lowest performance among all variants, which means that using
learnable parameter gives much more flexibility than using the fixed transition rule.
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Figure 5: Training results for different modified Fourier-up variants

4.1.3 Fine-tuning of pad_atten

We have tried multiple hyperparameter settings of the pad_atten variant, and in the training PSNR
diagram above we just show the best model we have. The performance is measured by the average

PSNR in the last 200 epochs in the following tabldT]

From Exp a,b,c, we determine the best dropout rate to be 0.3. From Exp b,d,e, we determine best no.
of heads is 1. As the no. of heads increase, the training accuracy increase but for the test accuracy, it
drops significantly, which infers that overfitting happens. From Exp b,g,h, we find the best learning
rate is 0.01. Hence, the best model hyperparameter setting is the setting in Exp b.

Table 1: Quantitative testing result comparison of image de-raining.

Exp no. no.of heads dropout learning rate Avg PSNR
a 1 0.1 0.01 21.6784
b 1 0.3 0.01 22.7907
c 1 0.5 0.01 22.1276
d 4 0.3 0.01 21.3468
e 8 0.3 0.01 19.5392
g 1 0.3 0.02 22.0962
h 1 0.3 0.05 22.1892

4.1.4 Testing results

During the 730 training epochs, we save the best model and apply them to the test set. The results are

shown in table



Table 2: Quantitative testing result comparison of image de-raining.
Model Configurations Rain200H PSNR  Rain200H SSIM

pad_attention 23.5167 0.7957
pad_theory 22.3602 0.7453
LPNet = 1ad 22.6593 0.7486
pad_larger_kernel 22.8351 0.7453
pad_corner 23.0357 0.7563
pad_area 22.8203 0.7497

4.1.5 Visualization of de-raining results

(a) is the rained picture, (b) is the ground truth, (c), (d), (e) and (f) are the results that using the
original pad, pad_larger_kernel, pad_corner and pad_attention variants respectively.

For (b), we observed that the original pad method has poor performance in removing raindrops. The
details on sky, pyramid, and desert are also highly blurry. Additionally, the color is of high deviation
to the ground truth, much dimmer than others.

For (d), it maintains the original yellow and green colors of the ground truth. But it performs badly in
removing the raindrops, especially for the pyramid and desert.

For (e), compared with (c), it can reduce more rain, but the color of it dimmer than the ground truth.

From (f), we can see pad_attention method performs very well, it removes almost 80-90% of the
raindrops and greatly preserves original color of the ground truth.

In conclusion, by comparing four methods, the pad_attention performs the best. It can not only
preserve the color but also the details. pad_larger_kernel performs well on preserving the color and
pad_corner performs well on de-raining.
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4.2 Stage 2: Apply Fourier-Up variants to image segmentation (DeepLabv3)
4.2.1 Dataset

Training: VOC2012 + Augmented (10,582 images for training and 1,449 images for validation) [17]
Testing: VOC2012 (1,449 images) [17]

4.2.2 Training performance diagram

As shown in[7] the overall accuracy and mean IoU of both the pad (blue) and the pad_attention (green)
outperforms the original DeepLabv3 using spatial up-sampling, which proves the effectiveness of the



Fourier-Up variants in improving the model performance of various image processing tasks.
Another interesting observation is that during the first half of training, the performance of
pad_attention is worse than the other two. This is probably because attention incorporates much
more parameters, which makes it hard to train in the initial stage. This also explains why at the
end of 10,000 iterations the pad_attention doesn’t outperform the pad as stage 1 shows. Original
DeepLabv3 is trained for 30,000 iterations to converge, and due to the time limitation, we only train
10,000 iterations for comparison. We believe pad_attention will outperform pad if trained enough
iterations.

Loss Overall Acc Mean loU

—— FourierUp 0.92 1
original
—— attention 0.90 4

—— FourierUp
original 0.2 4
—— attention

FourierUp
original
attention
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Figure 7: Comparison of three settings’ training performance

4.2.3 Testing results

During the 10,000 training iterations, we save the best model and apply them to the test set. The
results are shown in table 3l

Table 3: Quantitative Comparisons of DeepLabV3 with different Upsampling module.

Upsample Methods Overall Accuracy Mean Accuracy Mean IoU

Original 09113 0.8157 0.6775
pad 0.9215 0.8363 0.7106
pad_attention 0.9202 0.8360 0.7047

4.2.4 Visualization of segmentation results

(b) is the ground truth picture, while (a) is the corresponding target segmentation result. Basically,
there are four regions to segment, the left and right chairs, the child and the table.

For (c), we observed that the original DeepLabv3 performs poorly in segmentation of the two chairs.
It just detects a small portion of the left chair while completely ignores the right one. And it cannot
give a good segmentation on the child’s arm on the left.

For (d), we can observe that the pad_attention method works better than the original model, especially
the detail of the left chair and arm of the child, but it ignores the right chair as well.

For (e), we can see that the pad method does the best, because it does detect the details of the child,
table and both chairs, though the right one is incomplete.

In conclusion, from both the testing scores and the visualization, the pad and the pad_attention
methods do better on image segmentation than the vanilla DeepLabv3.
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5 Conclusions and future work

In this project, we explored enhancements to Deep Fourier Up-sampling and demonstrated its
versatility across two key computer vision tasks: image de-raining and semantic segmentation. By
proposing several novel variants—such as stacked Fourier modules and frequency attention—we
extended the theoretical and practical capabilities of FourierUp beyond its original form.

Experimental results on the Rain200H dataset revealed that our attention-enhanced variant
(pad_attention) consistently outperformed others in terms of PSNR and SSIM, validating the
hypothesis that global frequency-aware modeling improves restoration quality. Likewise, applying
FourierUp variants to DeepLabv3 segmentation on the VOC2012 dataset yielded higher overall
accuracy and mloU than baseline bilinear up-sampling.

These results underscore the generality and robustness of Fourier-based up-sampling methods when
integrated into deep neural networks. The Fourier domain’s ability to globally model long-range
dependencies proves valuable in preserving fine image details and improving structural consistency.

Our code is publicly available at: https://github.com/Verbsius/EECS556_25WN

Future Work
Several promising directions remain for future research:

1. Extended Training for Attention Modules: Our attention-based variants underperformed
the pad variant at 10,000 training epoch in image segmentation. We believe running extended
training (e.g., 30,000+ iterations) could unlock their full potential.

2. Multi-Scale Fourier Attention: Inspired by pyramid and transformer-based models, de-
veloping hierarchical frequency attention modules could enhance multi-resolution fusion
across scales.

3. Cross-Domain Applications: While we focused on de-raining and segmentation, applying
FourierUp to tasks like super-resolution, depth estimation, or medical imaging could further
validate its generality.

11
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4. Hardware Efficiency: Future work may explore low-rank or quantized versions of the
Fourier attention modules to reduce computational overhead on edge devices, especially for
the pad_attention variant.

Overall, our innovations in Fourier-based up-sampling demonstrate a strong foundation for future
improvements in both performance and applicability across diverse vision problems.
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