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1 Abstract

Large language models (LLMs) excel in NLP tasks but lack intrinsic style adaptability. To address this, we refine a representation editing
approach called DRESS, which uses steering vectors to shift model activations for controllable style transfer. DRESS first identifies style-related
attention heads via linear probing, then extracts a style subspace using SVD, and finally injects style-aware modifications into model activations
during generation. We improve DRESS in three directions: (1) we automatically determine the optimal rank of each attention head’s style
subspace using BIC; (2) we propose a KNN-based local editing direction for fine-grained control; and (3) we accelerate inference by applying
KV caching to both base and stylized forward passes. Beyond text, we extend this method to text-to-speech (TTS) synthesis using Spark-TTS,
demonstrating that steering-based style editing is also effective for speech generation. Our empirical results show that these enhancements
yield more efficient, accurate, and stylized outputs in both text and speech domains.

2 Introduction

Large language models (LLMs), such as GPT-4 [1] and LLaMA-3 [2], have demonstrated exceptional performance in natural language
processing (NLP) tasks. However, these models lack the intrinsic ability to adapt their language style, which encompasses aspects such as tone,
personality, emotion, and historical context [3].

Stylized responses are essential in numerous applications where user engagement and immersion rely heavily on linguistic personality. For
example, role-playing NPCs in video games must maintain consistency with their designated dialect and tone, while virtual assistants in
professional settings may need to adjust their level of formality dynamically. Without effective style adaptation, LLM responses risk sounding
generic or out of place.

Currently, two primary approaches are used to generate stylized responses: prompting with few-shot demonstrations and fine-tuning. However,
both methods have significant limitations. Prompting [4] often struggles to fully capture the nuances of a specific style, while fine-tuning
[5] is computationally expensive. To overcome these challenges, DRESS-LLM [6] is proposed to control the style of LLM responses using
representation editing [7], adding a steering vector to the LLM activations to shift the representations to another language style, which has
shown great effectiveness and efficiency over other SOTA methods.

To fully explore the power of the steering vector editing method proposed by DRESS, our project is separated into two phases. In the first
stage, we refine the representation editing pipeline through adaptive subspace selection, local direction estimation, and faster inference via
KV caching. In the second stage, we extend this framework to the domain of text-to-speech (TTS) by integrating it with Spark-TTS [8],
demonstrating that steering-based style editing can also effectively control vocal attributes such as pitch, speed, and timbre. Specifically,
we define two contrasting vocal styles using Spark-TTS attribute settings and apply activation-based editing to shift model outputs from the
original style toward the target style during inference, achieving fine-grained control without retraining. 1

3 Related Work

3.1 Large Language Model Editing

Representation editing techniques have recently emerged as a lightweight, train-free approach for instilling specific behaviors and attributes
into large language models (LLMs) by operating directly on their hidden representations during inference. Unlike conventional fine-tuning or
prompt-based methods, representation editing avoids expensive parameter updates or long prompts by computing steering vectors that shift
activations along attribute-relevant directions. In the context of stylized question answering, DRESS [6] exemplifies this paradigm by isolating
a style subspace within attention head activations through attention head filtering and subspace denoising via singular value decomposition.
For a given target style, DRESS calculates steering vectors in the identified subspace and injects them adaptively during generation, thus
achieving flexible style control while preserving semantic integrity. This model editing framework will be detailed further in the following
section. This approach leverages over-parameterization in LLMs to assume orthogonality between style and semantic components, enabling
precise disentanglement with minimal interference [6].

3.2 Style Control of Text-to-Speech Generation

Existing approaches to style control in TTS can be broadly categorized into the following paradigms:

• Reference-based methods, which rely on exemplar audio to transfer prosody and timbre characteristics. These methods, such as
Llasa [9], often suffer from instability due to sensitivity to the quality and content of the reference input.

1Phase 1 codes are available at: https://github.com/rederyang/StyLLE. Phase 2 codes are available at: https://github.com/
IUboyfriend/Sparktts_stylized.

https://github.com/rederyang/StyLLE
https://github.com/IUboyfriend/Sparktts_stylized
https://github.com/IUboyfriend/Sparktts_stylized


• Attribute-based methods, which explicitly modify prosodic features like pitch and speaking rate using flow-matching mechanisms
or post-filtering techniques. For instance, CosyVoice2 [10] adopts flow-matching for prosody prediction, but this often leads to
complex training pipelines and potential degradation in naturalness.

In contrast, our approach—integrating the DRESS framework with SparkTTS—provides a unified, lightweight solution. By injecting steering
vectors into model activations along a learned style subspace, we enable fine-grained, dynamic style control without retraining. This zero-shot,
modular framework is more interpretable than black-box methods and avoids reliance on reference audio, flow matching, or complex pipelines.

4 Method: Improved Style Editing Framework
4.1 Style Editing Framework of DRESS

The DRESS framework [6] aims to modify a pre-trained Large Language Model (LLM) M to respond to a user query q in a specific target
style S, producing a stylized response M ′(q) that adheres to S while preserving the original semantic meaning of M(q). The target style S is
implicitly defined by a dataset of stylized examples, typically question-answer pairs {qi, a+

i }
n
i=1 where a+

i ∼ S.

To achieve this without retraining, DRESS employs representation editing during inference. The core idea relies on constructing a paired
dataset D = {qi, a+

i , a
−
i }

N
i=1, where a−

i represents the ordinary-style response to qi that is semantically equivalent to the target-style response
a+
i . This dataset is crucial for identifying style-specific activation patterns. The editing process involves adding calculated steering vectors

to the internal activations within the Multi-Head Attention (MHA) blocks of the transformer architecture. The original DRESS framework
follows a three-stage pipeline:

1. Attention Head Filtering: This stage identifies which attention heads are most relevant to the target style. For each head h in
layer l, the activation u(h,l) = Attnh(x

(l)) (the output of the attention mechanism before the output projection WO
h ) is extracted for

both ordinary (a−
i ) and stylized (a+

i ) responses from the dataset D. A linear probing classifier p(u(h,l)) = Sigmoid(⟨θ(h,l), u(h,l)⟩)
is trained for each head to distinguish between the two styles based on u(h,l). The heads exhibiting the highest classification
accuracy (top-H) are selected as style-relevant, forming a set A of head-layer pairs A = {(h, l)|head h in layer l is selected}.
Editing operations are only focused on these heads.

2. Style Subspace Filtering: Within the selected heads (h, l) ∈ A, DRESS aims to isolate a low-rank subspace that captures style
variations while minimizing semantic interference. This is achieved by analyzing the activation differences between paired stylized
and ordinary responses: δu(h,l)

i = u
(h,l)+
i − u

(h,l)−
i for each sample i in the dataset D. These difference vectors are collected

into a matrix ∆U (h,l) = [δu
(h,l)
1 , . . . , δu

(h,l)
N ]T ∈ RN×d, where d is the activation dimension. Singular Value Decomposition

(SVD) is applied to this matrix: ∆U (h,l) = S(h,l)Σ(h,l)(V (h,l))T . The top-R right singular vectors {v(h,l)1 , . . . , v
(h,l)
R } ⊂ Rd,

corresponding to the largest singular values, are chosen to form an orthogonal basis for the style subspace of head (h, l), where R
denotes the rank of the subspace. The original DRESS heuristically sets the rank R = 16 for all selected heads.

3. Adaptive Editing Strength: Instead of applying a fixed steering vector, DRESS calculates an adaptive strength α
(h,l)
r for each basis

vector v(h,l)r (where r indexes the basis vectors from 1 to R) at each generation step (i.e., for the current token’s activation u(h,l)).
This strength is determined by:

• A global strength component β(h,l)
r , calculated as the projection of the mean activation difference δu

(h,l)
= 1

N

∑N
j=1 δu

(h,l)
j

onto the basis vector v(h,l)r :
β(h,l)
r = ⟨δu(h,l)

, v(h,l)r ⟩

• An adaptive scaling factor γ(h,l)
r , which depends on the current token’s activation u(h,l) and the mean activation of the target

style samples u(h,l)+ = 1
N

∑N
j=1 u

(h,l)+
j :

γ(h,l)
r = cos(u(h,l)+ − u(h,l), v(h,l)r )

• An overall scaling hyperparameter λ.

The final editing strength applied along basis vector v(h,l)r is:

α(h,l)
r = λ(1 + γ(h,l)

r )β(h,l)
r

The complete steering vector for a selected head (h, l) ∈ A at the current generation step is then s(h,l) =
∑R

r=1 α
(h,l)
r v

(h,l)
r . For heads not in

A, s(h,l) = 0. The final edited activation for the MHA block output in layer l is computed as:

x(l+1) = MLP

(
Htotal⊕
h=1

WO
h

(
Attnh(x

(l)) + s(h,l)
))

where Htotal is the total number of heads in the layer. This process is applied dynamically during token generation, allowing the model M ′ to
produce responses in the target style S.

4.2 Head-wise Adaptive Style Subspace Determination

The DRESS framework posits that the stylistic variations captured by an attention head reside within a low-rank subspace of its activation space
[6]. Editing is confined to this subspace, derived via SVD from the activation difference matrix ∆U (h,l) (Sec. 4.1). Consequently, determining
the appropriate dimensionality, or rank R, of this style subspace for each head is critical to the efficacy of the editing process.

The original DRESS framework employs a fixed, heuristically chosen rank (e.g., Rank = 16) uniformly across all selected attention heads
(h, l) ∈ A. This assumes homogeneity in how different heads encode stylistic features. However, this assumption may be overly simplistic;
attention heads likely exhibit heterogeneity in their functional specialization [11], suggesting that the intrinsic dimensionality required to
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capture style might vary significantly across heads. A fixed rank R risks underfitting for heads encoding complex stylistic nuances (requiring
R > 16) or overfitting for heads where style is represented more sparsely (requiring R < 16), potentially incorporating noise or irrelevant
dimensions that could negatively impact semantic fidelity or fluency. This sensitivity motivates the need for a more principled approach to
rank selection. To address this limitation, we propose an automatic, data-driven method to determine the optimal style subspace rank R

(h,l)
opt

individually for each selected attention head (h, l) ∈ A. Our approach leverages the Bayesian Information Criterion (BIC) [12], a widely used
statistical criterion for model selection that balances model fit against model complexity.

Specifically, for each head (h, l) ∈ A, we first compute the SVD of its activation difference matrix: ∆U (h,l) = S(h,l)Σ(h,l)(V (h,l))T , where
Σ(h,l) contains the singular values σ(h,l)

i in descending order. We then define a search range [Rmin, Rmax] for the optimal rank. Rmin is set
as the minimum rank r′ such that the cumulative explained variance ratio (CEVR)

∑r′

i=1(σ
(h,l)
i )2/

∑d
j=1(σ

(h,l)
j )2 meets a threshold (e.g.,

≥ 0.5), ensuring a minimum level of variance capture. Rmax is set to the original dimension d of the activation space. The optimal rank R
(h,l)
opt

for head (h, l) is then determined by minimizing the BIC score within this range:

R
(h,l)
opt = argmin

r∈[Rmin,Rmax]

(Nd · log(MSEr) + r · (N + d+ 1) · log(Nd)) (1)

where N is the number of samples, d is the activation dimension, r is the candidate rank, MSEr = 1
Nd
∥∆U (h,l) −∆U

(h,l)
r ∥2F is the mean

squared reconstruction error using the rank-r approximation ∆U
(h,l)
r = S

(h,l)
:,1:r Σ

(h,l)
1:r,1:r(V

(h,l)
:,1:r )T , and the second term within the minimization

penalizes model complexity based on the candidate rank r.

This procedure effectively selects the rank that provides the best trade-off between accurately reconstructing the style-related activation
differences (low MSEr) and maintaining a parsimonious representation (low r). By applying this optimization head-wise, we allow the
dimensionality of the style subspace to adapt to the specific characteristics of each attention head. This calculation is performed offline during
a preprocessing phase, determining the optimal R(h,l)

opt for each relevant head. These optimized ranks are then used during the online inference
stage of the modified DRESS framework, replacing the fixed rank previously used. We hypothesize that this adaptive determination leads to
improved overall performance by tailoring the intervention dimensionality more precisely to each head’s contribution to style encoding.

4.3 K-Nearest Neighbor Stylization

The original DRESS framework determines the steering vector’s direction based on the global average displacement between stylized (u(h,l)+)
and ordinary (u(h,l)−) activations across the entire dataset D, projected onto the style subspace basis vectors {v(h,l)r }Ropt

r=1 . Specifically, the
core directional component is derived from δu

(h,l)
= 1

N

∑N
j=1(u

(h,l)+
j − u

(h,l)−
j ). While DRESS incorporates adaptive strength scaling

(γ(h,l)
r ) based on the current activation u(h,l), the underlying steering direction remains fixed for a given head, determined by this global

average difference. This "global style direction" aims to guide the current activation towards the overall center of the target style distribution
within the subspace.

However, a single global direction might not capture the potentially complex or multi-modal structure of the style manifold within the
subspace. To enable more localized and potentially adaptive steering directions, we propose a complementary approach termed K-Nearest
Neighbor (KNN) Stylization. Instead of relying on the global average displacement, we dynamically determine the style direction based on the
neighborhood of the current activation within the style subspace.

Formally, let u(h,l) be the current activation of head (h, l) during inference (by the original, unedited model). We project the stored ordinary-
style activations from the dataset, {u(h,l)−

j }Nj=1, onto the head’s style subspace basis V (h,l) = [v
(h,l)
1 , . . . , v

(h,l)
Ropt

]. Let the projected activations

be ũ
(h,l)−
j = (V (h,l))Tu

(h,l)−
j . Similarly, project the current activation: ũ(h,l) = (V (h,l))Tu(h,l). We then identify the set NK(u(h,l))

containing the indices of the K nearest neighbors of ũ(h,l) among {ũ(h,l)−
j }Nj=1 based on Euclidean distance within the style subspace.

Instead of using the global average difference δu
(h,l)

, we compute a local average difference based only on these K neighbors:

δu
(h,l)
KNN =

1

K

∑
j∈NK(u(h,l))

(u
(h,l)+
j − u

(h,l)−
j ) (2)

This local difference vector δu
(h,l)
KNN replaces the global δu

(h,l)
in the calculation of the global strength components β(h,l)

r (Sec. 4.1):

β
(h,l)
r,KNN = ⟨δu(h,l)

KNN , v(h,l)r ⟩ (3)

The adaptive scaling factor γ(h,l)
r and the final editing strength α

(h,l)
r = λ(1 + γ

(h,l)
r )β

(h,l)
r,KNN are calculated as before, but using these

neighbor-derived β values. The intuition is that the style direction derived from nearby examples in the activation subspace might provide a
more relevant and nuanced steering signal compared to the single global average, potentially improving adaptation to local variations within
the style manifold. The number of neighbors K becomes a hyperparameter controlling the locality of the direction estimate.

4.4 Acceleration via Decoupled KV Caching

The DRESS framework operates via an online editing regime: for each token generated, the model’s internal steering vectors (biases) are
dynamically adjusted based on the activations from a preceding "base" forward pass over the current sequence. This adaptive nature, while
central to its mechanism, introduces significant computational overhead during inference. The generation of each token requires two effective
forward passes through relevant layers: one to compute the base activations u(h,l) needed for calculating the adaptive strengths α(h,l)

r , and a
second "style" forward pass using the edited model to predict the next token. This sequential dependency and repeated computation hinder
throughput, limiting practical applicability.

Observing the DRESS online process, we can conceptualize the per-token generation as involving two distinct phases:

1. Base Forward Pass: The original, unedited model M processes the current sequence prefix Tq to obtain the head activations
Abase = {u(h,l)} required for calculating the adaptive steering strengths.
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2. Style Forward Pass: An edited version of the model M ′, incorporating the calculated steering vectors s(h,l) based on Abase,
processes the sequence prefix Tqa (typically Tq plus any QA formatting) to predict the next token tstyle.

Standard transformer inference acceleration relies heavily on KV caching to avoid recomputing key and value representations for previous
tokens. However, the dynamic editing in DRESS complicates direct application.

We propose methods to integrate KV caching by decoupling the caching mechanisms for the two forward passes, as outlined in Algorithm 1:

Base KV Caching: Applying KV caching to the Base Forward pass is straightforward. Since the model M remains unchanged (biases are
reset before this pass), the standard KV cache (KVbase) can be maintained and updated incrementally, reducing the complexity of this step
from quadratic to linear in sequence length (O(N2)→ O(N)). This optimization ( Base KV in Alg. 1) preserves the DRESS logic entirely,
offering acceleration without approximation – essentially a "free lunch".

Style KV Caching: Applying KV caching to the Style Forward pass ( Base+Style KV in Alg. 1) introduces a nuance. The model M ′ used
in this pass is edited based on Abase, meaning its parameters (specifically, the implicit biases added post-attention) change at each step i.
Therefore, the KV cache (KVstyle) computed at step i− 1 was generated by a slightly different model than the one used at step i. Reusing
KVstyle is thus an approximation, as the cached keys and values are not strictly aligned with the current step’s edited model. However, we
hypothesize that since the edits are additions to activations post-attention, the impact on the keys and values themselves might be minor, making
the cached values a sufficiently good approximation for efficient generation. Our experimental results (Sec. 6.4) validate this hypothesis,
showing significant speed-up with minimal quality degradation.

By employing KV caching for both passes (Base+Style KV), we aim to reduce the complexity of both critical steps to O(N), maximizing
inference throughput for the adaptive editing framework.

Algorithm 1 Accelerated Generation
Require: Model M , question tokens Tq , QA prefix tokens Tqa, pre-computed editing parameters θ, max length L
Ensure: Generated answer tokens Tans

1: Tans ← [],KVbase ← [],KVstyle ← []
2: for i = 1 to L do
3: M ← ResetModelBias(M)
4: Base Forward step differs:
5: DRESS: tbase, Abase,KVbase ← ForwardPass(M,Tq) ▷ O(N2)
6: Base KV: tbase, Abase,KVbase ← ForwardPass(M,Tq,KVbase) ▷ O(N )
7: Base+Style KV: tbase, Abase,KVbase ← ForwardPass(M,Tq,KVbase) ▷ O(N )
8: M ← EditModelBias(M,Abase, θ)
9: Style Forward step differs:

10: DRESS: tstyle, Astyle,KVstyle ← ForwardPass(M,Tqa) ▷ O(N2)
11: Base KV: tstyle, Astyle,KVstyle ← ForwardPass(M,Tqa) ▷ O(N2)
12: Base+Style KV: tstyle, Astyle,KVstyle ← ForwardPass(M,Tqa,KVstyle) ▷ O(N )
13: Tq, Tqa, Tans ← Tq ⊕ tstyle, Tqa ⊕ tstyle, Tans ⊕ tstyle
14: if IsStopToken(tstyle) then
15: break
16: end if
17: end for
18: return Tans

5 Method: Adaptation of DRESS to Text-to-Speech Generation

5.1 "Text+Attributes"-to-Speech Framework of SparkTTS

The architecture for "text+attribute"-based speech generation in SparkTTS is illustrated in Figure 1. SparkTTS uses a decoder-only transformer,
Qwen2.5-0.5B [13], as its speech language model. Given a transcript and three style attributes—gender (male, female), pitch, and speed (each
with five levels: very low, low, moderate, high, very high)—tokenizers convert these into corresponding text and attribute tokens. During
inference, the model produces two types of outputs: global tokens (a fixed-length sequence of 32 tokens encoding speaker characteristics and
style) and semantic tokens (generated at 50 tokens per second to represent linguistic content). These tokens are then passed to a pretrained
BiCodec [8] for detokenization, resulting in a final speech waveform in .wav format.

5.2 Single-Dressed SparkTTS

Our goal is to demonstrate that steering vector-based style transformation methods, such as DRESS, can also be applied to speech generation.
To this end, we define two distinct attribute configurations: the original style as {gender: female, pitch: high, speed: high} and the target style
as {gender: male, pitch: low, speed: low}. The objective is to apply DRESS to the activations corresponding to the original style, such that the
generated speech exhibits the characteristics of the target style.

Our baseline method directly follows the original DRESS pipeline. For a set of 50 scripts, we generate activations using both the original
and target attribute settings. From each pair, we extract the activations at the final token (<|im_end|>), as in the DRESS procedure. We then
perform linear probing to identify the top-K most style-relevant attention heads. Next, singular value decomposition (SVD) is applied to the
activation differences from these heads to isolate a low-rank subspace that captures style variation while suppressing noise.

During inference, we provide the model with the input transcript and the original style attributes. Steering vectors are computed dynamically at
each generation step and injected into the model activations, thereby guiding both the global and semantic token outputs toward the target style.

4



Figure 1: Spark-TTS speech generation process

5.3 Double-Dressed SparkTTS

Due to the distinct design of SparkTTS’s output format—where fixed-length global tokens represent style information and variable-length
semantic tokens encode linguistic content—directly applying DRESS based on the final end token alone proves insufficient. In our experiments,
we observed frequent failure cases where no global tokens were generated. This is likely because the intrinsic differences between global and
semantic tokens, making it difficult to determine a single global editing direction and strength that are simultaneously effective for both.

To address this limitation, we propose a Double-Dress method. During the activation extraction phase, we collect two separate sets of
activations: those at the end of the global token sequence (<|end_global_token|>, denoted ACTIVATIONS_GLOBAL) and those at the end of
the semantic token sequence (<|im_end|>, denoted ACTIVATIONS_SEMANTIC). During inference, we compute and inject steering vectors
based on ACTIVATIONS_GLOBAL for global token generation and on ACTIVATIONS_SEMANTIC for semantic token generation. This
separation allows for independent control over the two token streams, enabling more precise and stable stylization across both style and content
dimensions.

6 Results of Improved Style Editing Framework
6.1 Experiment Settings

We evaluate our proposed improvements using the same stylized Question-Answering (QA) benchmarks introduced by [6]: Shakespeare-style
(English) and Dream of the Red Chamber-style (Chinese). These datasets comprise paired ordinary-style and target-style responses with
aligned semantics, constructed using both source texts and GPT-4 based data augmentation. The curation process, including the use of general
QA datasets (MOSS for Chinese, Alpaca for English) and the train/test splits, follows the methodology detailed in the original DRESS paper.

To assess the quality of the generated stylized responses, we adopt the same set of metrics used in [6]. These include: (1) Style Intensity (SI),
measured by a separately trained BERT-based style classifier assessing the alignment with the target style; (2) Semantic Preservation (SP),
quantified by the averaged cosine similarity between the BGE embeddings [14] of the original and stylized responses; (3) Fluency Score (FS),
calculated as 1/(1 + log PPL) based on the perplexity assigned by the original base LLM; and (4) Overall Assessment (OA), an objective
composite score defined as OA = SI× SP× FS. Additionally, we report the GPT-4 Rating (0-10 scale) as a subjective measure of overall
quality, following the evaluation protocol from the original study.

All experiments are conducted using the Qwen-1.5-14B-Chat model [15] as the base LLM, consistent with the original DRESS experiments.
Computations are performed on a machine equipped with an NVIDIA A100 GPU. Key hyperparameters for the original DRESS components
(e.g., number of initially selected heads H , overall editing strength λ) are retained from the original paper unless specified otherwise. For our
proposed improvements, the CEVR threshold for Rmin determination is set to 0.5. Generation employs deterministic decoding (temperature
set to 0) to ensure stable metric evaluation. Further implementation details mirror those described in [6].

Figure 2: Impact of style subspace rank selection on generation quality.

6.2 Impact of Adaptive Style Subspace Determination

While the original DRESS framework investigated the sensitivity to the number of selected heads (H) and the global editing strength (λ), the
influence of the style subspace rank (R) was underexplored, with a fixed value (R = 16) being heuristically adopted. As illustrated in Figure 2,
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our analysis reveals that the choice of rank impacts generation quality across multiple metrics. Notably, the fixed rank of 16 used in the original
DRESS is suboptimal compared to ranks identified through broader exploration. This finding supports our motivation that a uniform rank
assignment is insufficient given head heterogeneity. Our proposed adaptive rank determination method, leveraging BIC, automatically selects a
potentially different R(h,l)

opt for each head. As shown in Table 1 and 2 (Adaptive Rank row), this automated approach achieves performance
comparable or slightly superior (particularly in semantic preservation) to the manually tuned baseline DRESS, while obviating the need for
heuristic rank selection.

Method Fluency (FS) Semantic (SP) Style (SI) Speed (token/s)

DRESS 0.2736 0.7078 96.75 2.51
Adaptive Rank 0.2746 0.7122 95.75 2.51
Accelerated (Base+Style KV) 0.2785 0.6979 97.00 7.32
Adaptive Rank + Accelerated 0.2789 0.6995 97.00 7.32

Table 1: Performance comparison of DRESS variants on the Dream of the Red Chamber benchmark.

Method Fluency (FS) Semantic (SP) Style (SI) Speed (token/s)

DRESS 0.2237 0.6485 99.75 2.51
Adaptive Rank 0.2280 0.6446 100.00 2.51
Accelerated (Base+Style KV) 0.2355 0.6259 100.00 7.32
Adaptive Rank + Accelerated 0.2387 0.6293 100.00 7.32

Table 2: Performance comparison of DRESS variants on the Shakespeare benchmark.

6.3 Analysis of KNN Stylization

Figure 3 demonstrates the effect of varying the number of neighbors (K) in our proposed KNN Stylization method. A clear trade-off emerges
between style intensity (SI) and semantic preservation (SP). As K decreases, SI generally increases while SP tends to decrease. This trend
saturates at very low K values (e.g., K ≈ 2000 in this experiment), where style intensity reaches its peak, suggesting the editing process
becomes heavily dominated by stylistic considerations. We hypothesize that using fewer, closer neighbors provides a more localized and
potentially more accurate estimate of the immediate style direction required for the current activation, leading to stronger style manipulation.
Conversely, increasing K incorporates information from a broader set of reference samples. This averaging effect might mitigate the influence
of semantic "noise" potentially entangled within the style subspace, even after the initial filtering steps, thereby better preserving semantics at
the cost of slightly diluted style steering. This analysis not only validates KNN Stylization as an effective mechanism but also highlights that
K serves as an intuitive hyperparameter for explicitly controlling the balance between stylistic fidelity and semantic integrity. Furthermore,
the observed trade-off reinforces the notion that the style subspaces identified, despite denoising efforts, may still retain residual semantic
information.

Figure 3: Trade-off between semantic preservation (SP) and style intensity (SI) as the number of neighbors (K) varies in KNN Stylization.

6.4 Evaluation of Accelerated Generation

Table 1 and 2 presents the results for our proposed generation acceleration technique utilizing KV caching for both the base and style forward
passes (Base+Style KV). This approach achieves a substantial speed-up, reaching approximately 7.32 tokens/second—nearly a 3-fold increase
compared to the original DRESS inference speed (2.51 tokens/second). Crucially, this acceleration is attained with minimal impact on
generation quality. In fact, we observe improvements in fluency (FS) and style intensity (SI), with only a decrease in semantic preservation
(SP). This outcome strongly suggests that the approximation introduced by reusing potentially "stale" KV cache values in the style forward
pass (where biases change per step) is acceptable. It implies that recomputing the full attention context from scratch after each step’s edit might
be redundant for maintaining effective style control, paving the way for significantly more efficient stylized generation in practical applications.
Furthermore, qualitative examples comparing the outputs of different methods are provided in Table 6.4.

6



DRESS Adaptive Rank Accelerated

[Shakespeare-style] Q: What is the time complexity of this linear search algorithm?

Ver queth the time complexity of this linear
search, yea, as tis in the bigode of algorhythms.
The time complexity of this, is O(n), where n
is the number of items in the tabele, or list, that
you search. This means that as the list grows,
so does the time, because each item must be
searched, one by one, until the prize is found or
not. Therefore, the linear search is of a snail’s
pace in terms of time, and not very efficient for
a large tabele.

Ver queth the time complexity of this linear
search, yea, as tis in the bigonometric measure.
The algorithm, which we call ’thou’, hase a time
complexity of O(n). This means that as the size
of the list (n) grows, so does the time it takes to
find the eld (for it must seach through all elds
in the list). So, the time it taketh to run the al-
gorithm is in direct proportion to the size of the
list.

Ver queth the time complexity of this linear
search, yea, as it were, the run-time of the al-
gorhythme. In this case, it shall be O(n), where
n is the number of elements in the array. This
means that as the elements increase, the time it
shall take to find the element, will also increase,
linearly. So, if the element is in the last, it shall
take n-1, or else, n, to find it. Therefore, the time
complexity of this linear search is of a propor-
tionate verity, to the number of elements in the
array.

[Dream of the Red Chamber-style] Q:我想了解一下GANs生成像的原理。

GANs， 全 名Generative Adversarial Net-
works，翻译过来就是生成对抗网络。这玩
意儿的原理就是通过两个神经网络，一个
叫生成器，一个叫判别器，这两者你来我
往的斗智斗勇，最终生成的图像是跟真的
似的，判别器也分不出真假来了，这就算
是成了。生成器是负责生成假的，判别器
是负责辨识真假，这两者一搭手，生成的
图象就越来越逼真了。不过这玩意儿也有
个毛病，那就是生成的图象有时候也会跑
偏，生成出些奇奇怪怪的图象来，这就需
要人工调调参数，或者换换模型，才能生
成出好的图象来。

GANs， 全 名Generative Adversarial Net-
works，翻译过来就是生成对抗网络。这玩
意儿的原理就是通过两个神经网络，一个
叫生成器，一个叫判别器，这两者你来我
往的斗智斗勇，最后生成器把假的图儿生
成得越来越像真的，判别器也把真的图儿
辨认得越来越准。简单来说，就是个“猫儿
偷鱼，狗儿守窝”的游戏，猫儿偷鱼偷得多
了，狗儿也辨认得出是猫儿不是狗儿了，
最后生成的图儿也就跟真的差不多了。

GANs， 全 名Generative Adversarial Net-
works，翻译过来就是生成对抗网络。这玩
意儿是两块儿，一块儿是生成器，一块儿
是判别器。生成器是拿一堆儿乱七八糟的
数据，给它整出一张新图儿来，判别器是
拿这张新图儿，给它判别是不是真的。两
块儿就在这儿玩儿猫儿腻，生成器想方设
法整出真图儿来，判别器想方设法别让生
成器整出假图儿来。这么玩儿来玩儿去，
生成器就整出一张越来越真的图儿来，判
别器也就越来越辨不出真假来了。等到判
别器辨不出真假了，这图儿就算是生成出
来了。这就是GANs生成像的原理。

Table 3: Qualitative examples: Stylized generation results for different methods.

7 Results of DRESS to Text-to-Speech Generation

7.1 Experiment Settings

As we adopt the "Text + Attributes" mode of speech generation, no explicit speech dataset is required. Instead, we prepare 50 training scripts,
and get pairwise activations for both the original style attributes ({gender: female, pitch: high, speed: high}) and the target style attributes
({gender: male, pitch: low, speed: low}). Additionally, we construct a test set of 100 scripts and generate corresponding ground-truth stylized
speeches using the target attributes. The objective is to apply the DRESS algorithm to the activations of these 100 test scripts—conditioned on
the original style attributes—and edit them to produce speech that reflects the target style.

7.2 Evaluation metrics

Speaker Similarity (SIM)[16]: Speaker similarity evaluates whether the generated speech retains the identity of the reference speaker.
Specifically, we utilize a pre-trained ECAPA-TDNN model to extract speaker embeddings from both reference speech xref and generated
speech xgen. Then, we compute the cosine similarity between these embeddings: SIM(xref, xgen) =

eref·egen
∥eref∥∥egen∥ ∈ [0, 1] where eref and egen are

the speaker embeddings of reference and generated audio, respectively. A higher similarity score indicates stronger preservation of speaker
identity.

Universal Mean Opinion Score (UTMOS)[17]: UTMOS provides an automatic estimation of speech naturalness based on UTMOS model
trained on human ratings. Given a synthesized audio sample xgen, UTMOS predicts a Mean Opinion Score (MOS): UTMOS(xgen) ≈ MOS ∈
[1, 5] Here, 1 corresponds to extremely poor naturalness, and 5 corresponds to excellent naturalness. Higher scores reflect better perceptual
speech quality.

Short-Time Objective Intelligibility (STOI)[18]: STOI measures the intelligibility of speech by comparing short-time spectral representations
of reference and generated speech signals. The STOI score between reference speech xref and generated speech xgen is calculated as follows:
STOI(xref, xgen) ∈ [0, 1] A score close to 1 indicates high intelligibility, whereas scores approaching 0 suggest severely impaired intelligibility.

Word Error Rate (WER): The WER measures the accuracy of speech transcription by comparing the Automatic Speech Recognition
(ASR) transcriptions of reference speech and generated speech. It is defined by the normalized edit distance (Levenshtein distance) between
the reference transcription Tref and hypothesis transcription Tgen: WER(Tref, Tgen) = S+D+I

N
where S, D, and I represent the number of

substitutions, deletions, and insertions respectively, and N denotes the total number of words in the reference transcript. Lower WER values
indicate higher linguistic accuracy.

EOS Miss: During generation, we observe that applying DRESS can sometimes introduce overly aggressive modifications, causing the model
not to output the End-of-Sequence (EOS) token. As a result, generation continues until the maximum sequence length is reached, leading to
abnormally long or incomplete outputs. To quantify this issue, we record the number of such occurrences out of the 100 test samples as an
indicator of generation stability.

7.3 Hyperparameter Setting

We mainly tune three hyperparameters, which are no.of heads, rank and λ. No.of heads is the number of most style-relevant heads selected by
linear probing. Rank is the number of singular vectors used in SVD in the style subspace filtering. λ is the overall scaling hyperparameter
when injecting the steering vector.

According to Sections 5.2 and 5.3, we design three experimental configurations, summarized in Table 7.3. Method 1 uses the Single-DRESS
SparkTTS setup, keeping all hyperparameters consistent with the original DRESS implementation, except for reducing the global steering
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strength λ from 3 to 1.3 to prevent the model from failing to generate global tokens. Method 2 also uses Single-DRESS SparkTTS, but with all
hyperparameters fine-tuned for better performance. Method 3 employs the Double-DRESS SparkTTS approach, with independently fine-tuned
parameters for both global and semantic token editing.

Method no. of heads rank λ

1(Single-DRESS) 64 16 1.3
2(Single-DRESS) 20 5 1.3
3(Double-DRESS) 128 for gloabl, 32 for semantic 12 0.1 for global, 1.25 for semantic

Table 4: Hyperparameter settings of Sparktts with DRESS

7.4 Quantitative Results

The evaluation results are presented in Table 7.4. The Target style output and Original style output refer to the speech samples generated by the
original SparkTTS using the "text + attributes" mode and are included for reference.

The SIM and STOI metrics primarily reflect the degree of stylization. As shown, Method 2 achieves the strongest stylization effect, with both
Method 2 and Method 3 showing clear increase over the Original Style Output. This supports the effectiveness of applying DRESS-based
editing for speech stylization. It is worth noting that both metrics are designed for comparing speeches of the same length. Since speaking
speed—one of our stylized attributes—alters the duration of generated speech, scores may be far lower than 1 even when the perceptual quality
remains high, as confirmed by human evaluations.

The UTMOS metric assesses the naturalness and fidelity of the generated speech. Both Method 2 and Method 3 yield high UTMOS scores,
indicating good consistency and perceptual quality, while Method 1 underperforms significantly in this regard.

WER and EOS Miss are used to measure generation stability. Comparing Methods 1 and 2, we observe that using too many attention heads or a
high subspace rank can lead to overly aggressive editing, increasing the risk of degenerate outputs. Method 3 achieves the lowest WER and
EOS Miss count, thanks to its separation of global and semantic token editing. By using <|end_global_token|> as the reference for global
tokens—rather than the shared <|im_end|> token as in Methods 1 and 2—it provides more appropriate and targeted steering vectors, resulting
in more stable and coherent generation.

Currently, the two sets of hyperparameters for global and semantic tokens are manually tuned using heuristic methods, which is both
inefficient and suboptimal. As future work, we plan to incorporate adaptive K selection into the Double-DRESS framework for automatic rank
determination, and conduct a more systematic search for the optimal number of heads and overall scaling hyperparameters.

Experiment SIM ↑ UTMOS ↑ STOI ↑ WER ↓ EOS Miss ↓
Target style output 1.0000 3.6368 1.0000 0.0000 -

Original style output 0.1011 3.6724 0.1764 0.0605 -
Method 1(Single-DRESS) 0.1521 2.9617 0.1609 0.2795 16
Method 2(Single-DRESS) 0.2215 3.2000 0.1905 0.2821 11
Method 3(Double-DRESS) 0.1551 3.1860 0.1842 0.1946 2

Table 5: Quantitative Measurement on Sparktts with DRESS

7.5 Qualitative Results

Qualitative examples demonstrate that Method 2 and Method 3 consistently produce high-quality outputs closely matching the target style,
whereas Method 1 yields unstable or unclear results.2

8 Conclusion and Future Work

In the first part of our work, we presented three improvements to the DRESS style editing framework. We introduced head-wise adaptive
rank determination via BIC for enhanced robustness, KNN Stylization offering localized steering and explicit control over the style-semantic
trade-off, and a decoupled KV caching strategy leading to faster inference with minimal quality degradation. These refinements enhance
the controllability, efficiency, and robustness of representation editing for stylized generation. The trade-off observed with KNN Stylization,
however, suggests residual semantic entanglement even after subspace filtering. Therefore, a key direction for future work is exploring more
advanced disentanglement techniques (e.g., non-linear methods or adversarial approaches) to achieve a cleaner separation between style and
content representations, potentially further improving semantic preservation with strong stylistic interventions.

In the second phase of our project, we successfully extended the DRESS style editing framework to the domain of speech generation using
SparkTTS. We demonstrated that steering vector-based editing, originally developed for text, is also effective for modulating vocal attributes
such as pitch, speed, and timbre in a zero-shot, text-to-speech setting. Our experiments showed that naive application of Single-DRESS can
lead to unstable generation, especially due to the separate nature of global and semantic token streams in SparkTTS. To address this, we
proposed a novel Double-DRESS strategy that independently edits the activations associated with global and semantic tokens, which achieves a
significantly improved generation stability and perceptual quality. For future work, we plan to incorporate all Stage 1 enhancements—including
adaptive subspace rank selection using BIC, KNN-based localized steering, and accelerated inference via KV caching—into the speech
generation setting. Additionally, we aim to move beyond discrete attribute labels by introducing continuous attribute conditioning, and to
automate the tuning of editing hyperparameters for each token stream, making the editing process more robust and scalable across diverse
speaking styles.

2Audio samples of the above three methods together with the original and target style output are available at: https://drive.google.
com/drive/folders/1XFX9BCVQEwwyMXdDgl90v0htZYc4z4M4?usp=sharing
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