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1. CNN Understanding 

Convolutional Neural Networks are a type of deep learning architecture commonly used 

for various computer vision tasks such as image recognition. 

 

From the name, it is evident that the convolution layers are the most critical component 

of CNNs. Convolution is a mathematical operation that involves sliding a small window 

(filter) over the input image. The filter will generate feature maps by performing 

element-wise multiplication and then summation with the corresponding pixels in the 

input. From the lecture, I know that in practice, convolution is normally implemented 

by cross-correlation instead, and the number of feature maps is equivalent to the number 

of filters used. 

 

To capture different levels of abstraction, CNNs typically have multiple convolutional 

layers stacked one after another. The network may learn some very simple features like 

corners and edges in the previous convolutional layers while much more complex 

features like the shape of the objects in the very last layers.  

 

Pooling layers are often inserted after convolutional layers. Pooling is a downsampling 

process applied to reduce the dimensions of the feature maps while retaining the most 

essential information. There are many types of pooing operations, such as max pooling, 

average pooling, L2 pooling, etc.  

 

After several convolutional and pooling layers, the resulting feature maps are flattened 

into a one-dimensional vector (vectorization). This vector is then fed into fully 

connected layers (dense layers) to take in the features generated by the previous 

convolutional layers and make predictions based on the learned representations. If the 

task is classification, the output nodes of the dense layers will often be applied with a 

Softmax function to convert the raw output into a probability distribution of different 

classes. 

 

Similar to traditional neural networks, CNN also adopts backpropagation to update its 

parameters in the direction to minimize the loss. The iterative forward propagation and 

backpropagation process continues until the model reaches convergence. 

 

Overall, CNNs leverage the power of convolutions, pooling, fully connected layers, and 

backpropagation algorithms to automatically extract relevant features from images, 

enabling CNNs to achieve impressive performance in various computer vision tasks, 

including image classification, object detection, and image segmentation. 



2. Explanation of the architecture of the two models built in Keras 

and PyTorch 

 

For the CNN model in Keras: 

 

Explanation of Model Architecture: 

Initially, the input image is 28*28*1; after the first convolution layer (64 3*3 kernels), 

64 feature maps are generated. Since no padding is by default, the size of each feature 

map is reduced by 2, becoming 26*26. Then, a max-pooling layer is applied with a filter 

size of 2*2. Since the stride is equal to the filter size by default (stride = 2), each feature 

map is sub-sampled horizontally and vertically by 2, hence, the size is reduced to 13*13. 

 

The subsequent convolution layer and max pooling layer have the same architecture. 

Each of the 64 filters in the convolution layer goes through all 64 feature maps from 

the previous layer and sums the results at corresponding positions to generate one new 

feature map. So, the number of newly generated feature maps is 64. Then a max pooling 

layer is to further reduce the dimension of each feature map to 5*5. 

 

Then, all the feature maps are flattened into a 1D vector and fully connected to 3 dense 

layers with 128 nodes each for the classification task. 

 

Finally, the third dense layer is fully connected to the output layer with 10 nodes 

representing the number of 0-9. A Softmax function is applied to the output layer to 

gain the probability distribution of each number. 



Explanation of the Number of Parameters for Each Layer: 

First Conv2d：640 parameters 

 

Kernel size: 3*3, no. of kernels = 64, no. of bias = 64 (one for each kernel) 

Total number of parameters = 3*3*64 + 64 = 640 

 

Second Conv2d : 36928 parameters 

 
Kernel size: 3*3, no. of kernels = 64, no. of bias = 64 (one for each kernel) 

For each kernel, since the previous layer has 64 feature maps, there are 64*3*3 = 576 

parameters 

There are 64 kernels in total, hence the total number of parameters = 576*64 + 64 (bias) 

= 36928 

 

Number of inputs to the dense layer: 1600 

 

 

The number of inputs to the dense layer equals the values in the last max_pooling layer 

= 5*5*64 = 1600 

 

First Dense Layer: 204928 parameters 

 

Total number of parameters = 1600 * 128 (weights) + 128 (bias) = 204928 

 

Second Dense Layer: 16512 parameters 

 

Total number of parameters = 128 * 128 (weights) + 128 (bias) = 16512 

 

Third Dense Layer: 16512 parameters 

 

Total number of parameters = 128 * 128 (weights) + 128 (bias) = 16512 

 

Fourth Dense Layer: 1290 parameters 

 



Total number of parameters = 128 * 10 (weights) + 10 (bias) = 1290 

 

Insight: From the calculation, the number of parameters for the First Dense Layer 

(204928) is far more than the total number of parameters in the previous convolutional 

layer. Hence, in a CNN, most parameters are concentrated in the fully connected layers, 

which consumes most of the computational power. In other word, convolution layers 

are not fully connected, and the magic of CNN in dealing with massive image data is 

that the convolution filter help reduce the calculations significantly.   

 

For the CNN model in Pytorch: 

 

 

Explanation of Model Architecture: 

Initially, the input image is 28*28*1, after the first convolution layer (10 5*5 kernels), 

10 feature maps are generated. Since no padding is by default, the size of each feature 

map is reduced by 4, becoming 24*24. Then, a max-pooling layer is applied with a filter 

size of 2*2. Since the stride is equal to the filter size by default (stride = 2), each feature 

map is sub-sampled horizontally and vertically by 2, hence, the size is reduced to 12*12. 

 

The subsequent convolution layer has 20 filters of size 5*5, hence generating 20 feature 

maps with size reduced to 8*8. Then, a max-pooling with a filter size of 2*2 further 

reduces the size of each feature map to 4*4.  

 

After that, all the feature maps are flattened into a 1D vector of dimension 20*4*4 = 

320 and fully connected to a dense layers with 50 nodes each to do the classification 

task. 

 

Finally, the dense layer is fully connected to the output layer with 10 nodes representing 

the number of 0-9. A Softmax function is applied to the output layer to gain the 

probability distribution of each number. 



3. Modification to the CNN model in Keras and Insights 

i. Number of Convolution layers and Max-pooling layers 

 

Modified Model: 1 convolution layer with a max-pooling layer 

 

 

 

 

Original Model: 2 convolution layers, each with a max-pooling layer 

 

 

 
 

 

 

 

 

 



Modified Model: 3 convolution layers, each with a max-pooling layer 

 

 

 
 

Observations and insights: 

The results show that as the number of the convolution layer and max-pooling layer 

increases, the performance drops (accuracy from 97.62% to 97.39%, further to 95.84%). 

It may indicate that the input data is so simple that one convolution layer and max-

pooling layer are enough to deal with it. More convolution and max-pooling layers may 

lead to losing some important features because of a higher-level representation of the 

data. 

 

 

ii. Activation functions  

 

Original Model: Relu 

 



 

 
 

Revised Model: Sigmoid 

 

 

 

 

 

 



Revised Model: Tanh 

 

 

 
 

 

Observations and insights: 

From the results, the Relu activation (97.39%) outstands the other two activation 

functions, which are Sigmoid (96.64%) and Tanh (96.83%), verifying its advantage in 

improving the model performance. This may related to Relu’s constant gradient, which 

can avoid the vanishing gradient problem. 

 

 

 

 

 

 

 



iii. Size of the filter in the convolution layers 

 

Revised Model: 2*2 kernel 

 

 

 
 

Original Model: 3*3 kernel 

 

 

 
 



Revised Model: 4*4 kernel 

 

 

 

 

Observations and insights: 

From the results, as the size of the kernels in the convolution layers increases from 2*2 

to 4*4, the test accuracy also increases from 96.90% to 97.55%. That may be because 

a larger receptive field can capture more contextual information from the image, hence, 

some more complex patterns or features may be identified. However, in practice, the 

best size of the receptive field depends on the specific task and dataset. It is important 

to experiment with different sizes of the convolution filter to identify the one with the 

best performance.  

 

 

 

 

 

 

 

 

 

 



4. Modification to the CNN model in Pytorch and Insights 

i. Number of kernels in each convolution layer 

 

Revised Model: 5 kernels in the first convolution layer, 10 in the second  

 

 

 

Original Model: 10 kernels in the first convolution layer, 20 in the second 

 

 

 

 

Revised Model: 20 kernels in the first convolution layer, 40 in the second  

 

 

 

Observations and insights: 

From the results, as the number of kernels increases in the convolution layer, the 

model's performance also increases (the accuracy increases from 94.61% to 97.47%). 

Increasing the number of kernels means increasing the model capacity. The model with 

more convolution filters can capture more features that can be potentially helpful to the 

classification task. Hence, the performance of the models increases as the number of 

kernels increases. 



ii. Number of hidden layers in the fully-connected network 

 

Original Model: 1 hidden layer with 50 nodes 

 

 

 

 

Modified Model: 2 hidden layers with 50 nodes each 

 

 

 

 

Modified Model: 3 hidden layers with 50 nodes each 

 

 

 



Observations and insights: 

From the results, as the number of hidden layers increases, the training loss and the test 

loss both increase as the number of hidden layers increases. Firstly, the problem could 

not be overfitting because the training loss also increases as the model complexity 

increases. One possible explanation is that the training data is not sufficient for such 

complex models to take in. More dense layers mean a higher capacity to learn. If the 

dataset is not diverse and large enough, the complex dense layers may not be able to 

learn the underlying patterns of the data effectively. 

 

iii. Number of nodes in the fully-connected network 

 

Modified Model: 20 nodes in the hidden layer 

 

 
 

 

Original Model: 50 nodes in the hidden layer 

 

 

 

 

 

 

 

 

 

 



Modified Model: 80 nodes in the hidden layer 

 

 

 

Observations and insights: 

From the results, as the number of nodes in the hidden layers increases from 20 to 80, 

the test accuracy of the model increases from 96.33% to 97.07%. That may be because 

one hidden layer with 20 nodes is too simple to deal with so many feature maps 

provided by the previous convolution layers. As the number of nodes in the hidden layer 

increases, the capacity of the fully-connected network gets stronger, fitting better for 

the complex features provided by the convolution layers. 

 

5. Conclusion 

During this lab, I gained valuable hands-on experience implementing and fine-tuning two CNN 

networks using PyTorch and Keras. This exercise allowed me to become familiar with two 

prominent deep-learning frameworks and learn how to leverage the power of Google Colab for 

efficient experimentation. Through writing the code and analyzing the network architectures, I 

developed a deeper understanding of CNNs and their underlying principles. Furthermore, fine-

tuning the models and analyzing the tuning results provided valuable insights into optimizing 

CNN architectures for improved performance. Overall, this experience has been incredibly 

meaningful and has greatly enriched my understanding of CNNs and deep learning as a whole. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 


