
EIE4122 Deep Learning and Deep Neural Networks

Lab 1: CNNs for Handwritten Digit Classification

HAO Jiadong (20084595d)

1. CNN Understanding

Convolutional Neural Networks are a type of deep learning architecture commonly used

for various computer vision tasks such as image recognition.

From the name, it is evident that the convolution layers are the most critical component

of CNNs. Convolution is a mathematical operation that involves sliding a small window

(filter) over the input image. The filter will generate feature maps by performing

element-wise multiplication and then summation with the corresponding pixels in the

input. From the lecture, I know that in practice, convolution is normally implemented

by cross-correlation instead, and the number of feature maps is equivalent to the number

of filters used.

To capture different levels of abstraction, CNNs typically have multiple convolutional

layers stacked one after another. The network may learn some very simple features like

corners and edges in the previous convolutional layers while much more complex

features like the shape of the objects in the very last layers.

Pooling layers are often inserted after convolutional layers. Pooling is a downsampling

process applied to reduce the dimensions of the feature maps while retaining the most

essential information. There are many types of pooing operations, such as max pooling,

average pooling, L2 pooling, etc.

After several convolutional and pooling layers, the resulting feature maps are flattened

into a one-dimensional vector (vectorization). This vector is then fed into fully

connected layers (dense layers) to take in the features generated by the previous

convolutional layers and make predictions based on the learned representations. If the

task is classification, the output nodes of the dense layers will often be applied with a

Softmax function to convert the raw output into a probability distribution of different

classes.

Similar to traditional neural networks, CNN also adopts backpropagation to update its

parameters in the direction to minimize the loss. The iterative forward propagation and

backpropagation process continues until the model reaches convergence.

Overall, CNNs leverage the power of convolutions, pooling, fully connected layers, and

backpropagation algorithms to automatically extract relevant features from images,

enabling CNNs to achieve impressive performance in various computer vision tasks,

including image classification, object detection, and image segmentation.

2. Explanation of the architecture of the two models built in Keras

and PyTorch

For the CNN model in Keras:

Explanation of Model Architecture:

Initially, the input image is 28*28*1; after the first convolution layer (64 3*3 kernels),

64 feature maps are generated. Since no padding is by default, the size of each feature

map is reduced by 2, becoming 26*26. Then, a max-pooling layer is applied with a filter

size of 2*2. Since the stride is equal to the filter size by default (stride = 2), each feature

map is sub-sampled horizontally and vertically by 2, hence, the size is reduced to 13*13.

The subsequent convolution layer and max pooling layer have the same architecture.

Each of the 64 filters in the convolution layer goes through all 64 feature maps from

the previous layer and sums the results at corresponding positions to generate one new

feature map. So, the number of newly generated feature maps is 64. Then a max pooling

layer is to further reduce the dimension of each feature map to 5*5.

Then, all the feature maps are flattened into a 1D vector and fully connected to 3 dense

layers with 128 nodes each for the classification task.

Finally, the third dense layer is fully connected to the output layer with 10 nodes

representing the number of 0-9. A Softmax function is applied to the output layer to

gain the probability distribution of each number.

Explanation of the Number of Parameters for Each Layer:

First Conv2d：640 parameters

Kernel size: 3*3, no. of kernels = 64, no. of bias = 64 (one for each kernel)

Total number of parameters = 3*3*64 + 64 = 640

Second Conv2d : 36928 parameters

Kernel size: 3*3, no. of kernels = 64, no. of bias = 64 (one for each kernel)

For each kernel, since the previous layer has 64 feature maps, there are 64*3*3 = 576

parameters

There are 64 kernels in total, hence the total number of parameters = 576*64 + 64 (bias)

= 36928

Number of inputs to the dense layer: 1600

The number of inputs to the dense layer equals the values in the last max_pooling layer

= 5*5*64 = 1600

First Dense Layer: 204928 parameters

Total number of parameters = 1600 * 128 (weights) + 128 (bias) = 204928

Second Dense Layer: 16512 parameters

Total number of parameters = 128 * 128 (weights) + 128 (bias) = 16512

Third Dense Layer: 16512 parameters

Total number of parameters = 128 * 128 (weights) + 128 (bias) = 16512

Fourth Dense Layer: 1290 parameters

Total number of parameters = 128 * 10 (weights) + 10 (bias) = 1290

Insight: From the calculation, the number of parameters for the First Dense Layer

(204928) is far more than the total number of parameters in the previous convolutional

layer. Hence, in a CNN, most parameters are concentrated in the fully connected layers,

which consumes most of the computational power. In other word, convolution layers

are not fully connected, and the magic of CNN in dealing with massive image data is

that the convolution filter help reduce the calculations significantly.

For the CNN model in Pytorch:

Explanation of Model Architecture:

Initially, the input image is 28*28*1, after the first convolution layer (10 5*5 kernels),

10 feature maps are generated. Since no padding is by default, the size of each feature

map is reduced by 4, becoming 24*24. Then, a max-pooling layer is applied with a filter

size of 2*2. Since the stride is equal to the filter size by default (stride = 2), each feature

map is sub-sampled horizontally and vertically by 2, hence, the size is reduced to 12*12.

The subsequent convolution layer has 20 filters of size 5*5, hence generating 20 feature

maps with size reduced to 8*8. Then, a max-pooling with a filter size of 2*2 further

reduces the size of each feature map to 4*4.

After that, all the feature maps are flattened into a 1D vector of dimension 20*4*4 =

320 and fully connected to a dense layers with 50 nodes each to do the classification

task.

Finally, the dense layer is fully connected to the output layer with 10 nodes representing

the number of 0-9. A Softmax function is applied to the output layer to gain the

probability distribution of each number.

3. Modification to the CNN model in Keras and Insights

i. Number of Convolution layers and Max-pooling layers

Modified Model: 1 convolution layer with a max-pooling layer

Original Model: 2 convolution layers, each with a max-pooling layer

Modified Model: 3 convolution layers, each with a max-pooling layer

Observations and insights:

The results show that as the number of the convolution layer and max-pooling layer

increases, the performance drops (accuracy from 97.62% to 97.39%, further to 95.84%).

It may indicate that the input data is so simple that one convolution layer and max-

pooling layer are enough to deal with it. More convolution and max-pooling layers may

lead to losing some important features because of a higher-level representation of the

data.

ii. Activation functions

Original Model: Relu

Revised Model: Sigmoid

Revised Model: Tanh

Observations and insights:

From the results, the Relu activation (97.39%) outstands the other two activation

functions, which are Sigmoid (96.64%) and Tanh (96.83%), verifying its advantage in

improving the model performance. This may related to Relu’s constant gradient, which

can avoid the vanishing gradient problem.

iii. Size of the filter in the convolution layers

Revised Model: 2*2 kernel

Original Model: 3*3 kernel

Revised Model: 4*4 kernel

Observations and insights:

From the results, as the size of the kernels in the convolution layers increases from 2*2

to 4*4, the test accuracy also increases from 96.90% to 97.55%. That may be because

a larger receptive field can capture more contextual information from the image, hence,

some more complex patterns or features may be identified. However, in practice, the

best size of the receptive field depends on the specific task and dataset. It is important

to experiment with different sizes of the convolution filter to identify the one with the

best performance.

4. Modification to the CNN model in Pytorch and Insights

i. Number of kernels in each convolution layer

Revised Model: 5 kernels in the first convolution layer, 10 in the second

Original Model: 10 kernels in the first convolution layer, 20 in the second

Revised Model: 20 kernels in the first convolution layer, 40 in the second

Observations and insights:

From the results, as the number of kernels increases in the convolution layer, the

model's performance also increases (the accuracy increases from 94.61% to 97.47%).

Increasing the number of kernels means increasing the model capacity. The model with

more convolution filters can capture more features that can be potentially helpful to the

classification task. Hence, the performance of the models increases as the number of

kernels increases.

ii. Number of hidden layers in the fully-connected network

Original Model: 1 hidden layer with 50 nodes

Modified Model: 2 hidden layers with 50 nodes each

Modified Model: 3 hidden layers with 50 nodes each

Observations and insights:

From the results, as the number of hidden layers increases, the training loss and the test

loss both increase as the number of hidden layers increases. Firstly, the problem could

not be overfitting because the training loss also increases as the model complexity

increases. One possible explanation is that the training data is not sufficient for such

complex models to take in. More dense layers mean a higher capacity to learn. If the

dataset is not diverse and large enough, the complex dense layers may not be able to

learn the underlying patterns of the data effectively.

iii. Number of nodes in the fully-connected network

Modified Model: 20 nodes in the hidden layer

Original Model: 50 nodes in the hidden layer

Modified Model: 80 nodes in the hidden layer

Observations and insights:

From the results, as the number of nodes in the hidden layers increases from 20 to 80,

the test accuracy of the model increases from 96.33% to 97.07%. That may be because

one hidden layer with 20 nodes is too simple to deal with so many feature maps

provided by the previous convolution layers. As the number of nodes in the hidden layer

increases, the capacity of the fully-connected network gets stronger, fitting better for

the complex features provided by the convolution layers.

5. Conclusion

During this lab, I gained valuable hands-on experience implementing and fine-tuning two CNN

networks using PyTorch and Keras. This exercise allowed me to become familiar with two

prominent deep-learning frameworks and learn how to leverage the power of Google Colab for

efficient experimentation. Through writing the code and analyzing the network architectures, I

developed a deeper understanding of CNNs and their underlying principles. Furthermore, fine-

tuning the models and analyzing the tuning results provided valuable insights into optimizing

CNN architectures for improved performance. Overall, this experience has been incredibly

meaningful and has greatly enriched my understanding of CNNs and deep learning as a whole.

